Machine Learning for Human Biometrics

SDDEC22-14 | Client: JR Spidell | Advisor: Dr. Akhilesh Tyagi Team Members: Ritvik Maripally, Nathanael Morris, Ron Mei Hang Teoh, Yee Shen Teoh, Zi-Jan Wong

Introduction

Problem statement:

- Truck drivers required constant focus and concentration.
- Hazardous anyone in close proximity if driver dozed off or was too stressed to focus on driving.

Solution:

To develop a device that monitors the driver's eye movements in real time to predict if the driver is under distress or fatigued and provide appropriate suggestions to ensure the driver and other road users' safety.

Users & Uses

Prospective Users:

• Truck Drivers

Potential Users:

- Pilots
- Surgeons
- Anyone who wants to utilize eye biometric data

Uses:

• To predict if a person is in distress or fatigued

Design Requirements

Requirements:

- The pupil detection algorithm shall process 10-bit grayscale images
- The eye movement classifier shall require a sampling rate of 30 hertz, if a frame is a saccade, fixation, smooth pursuit, or unknown.
- The eye movement classifier shall look for patterns in the data to figure out if a user is stressed or fatigued.
- Our project shall not violate any HIPAA laws
- The display monitor shall output the result to inform user if they are stressed or fatigued.
- Strong encryption of data when working with biometrics

Constraints:

- Video camera is stationary
- Lighting condition of the room
- Glares on the pupil

Operating environment:

• Any indoor environment

Relevant standards:

IEEE 1012-2016/Cor 1-2017: Draft Standard for System, Software and Hardware Verification and Validation -**Corrigendum** 1 IEEE 3652.1-2020: IEEE Guide for Architectural Framework and Application of Federated Machine Learning P3167: Standard for Secure Biometrics Device Interface

Design Approach

Conceptual sketch:

Hardware flow:

Detailed program flow:

Technical Details

Technology:

- Ultra96v2
- **Display Monitor**
- ArduCam Camera Module

Software Modules:

- Python
- Jupyter Notebook
- Tensorflow
- REMoDNaV
- InfluxDB

Security Measures

Authentication Methods:

- Physical Tokens(NFC)
- Universal 2nd Factor

Encryption Methods:

- PKI(Public Key

Rules/Foundation:

- Privacy
- Adapting changes
- **Encryption/Anonymizing**
- Disclosures

Infrastructure)

- **OpenPGP**
- AES
- **Breach Notifications**
 - Following Laws especially **Biometric specific laws**

Testing

Strategy:

We were planning to carry out unit testing, integration testing, and security testing to make sure all components are working and risk assessment is done after integration of Ultra96.

Observation

Pupil Detection Algorithm Results:

Comparison between real and predicted data without glare in iris and with glare in iris.

REMoDNaV Algorithm Results:

- A tsv file with the onset and duration of certain eye-movement classifications:
- **Fixations**
- **Pursuits**
- Smooth Pursuit Events
- Post Saccadic Oscillations

The algorithm also outputs extra data that can be used:

- Amplitude of the eye
- Peak, Mean and Average Velocity